Natural $G$-constellation families
Documenta mathematica, Tome 13 (2008), pp. 803-823.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $G$ be a finite subgroup of $\gl_n(\mathbb{C}). G$-constellations are a scheme-theoretic generalization of orbits of $G$ in $\mathbb{C}^n$. We study flat families of $G$-constellations parametrised by an arbitrary resolution of the quotient space $\mathbb{C}^n/G$. We develop a geometrical naturality criterion for such families, and show that, for an abelian $G$, the number of equivalence classes of these natural families is finite. The main intended application is the derived McKay correspondence.
Classification : 14J17, 14J10, 14D20, 14J40
@article{DOCMA_2008__13__a1,
     author = {Logvinenko, Timothy},
     title = {Natural $G$-constellation families},
     journal = {Documenta mathematica},
     pages = {803--823},
     publisher = {mathdoc},
     volume = {13},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a1/}
}
TY  - JOUR
AU  - Logvinenko, Timothy
TI  - Natural $G$-constellation families
JO  - Documenta mathematica
PY  - 2008
SP  - 803
EP  - 823
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a1/
LA  - en
ID  - DOCMA_2008__13__a1
ER  - 
%0 Journal Article
%A Logvinenko, Timothy
%T Natural $G$-constellation families
%J Documenta mathematica
%D 2008
%P 803-823
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a1/
%G en
%F DOCMA_2008__13__a1
Logvinenko, Timothy. Natural $G$-constellation families. Documenta mathematica, Tome 13 (2008), pp. 803-823. http://geodesic.mathdoc.fr/item/DOCMA_2008__13__a1/