Rings of integers of type $K(\pi,1)$
Documenta mathematica, Tome 12 (2007), pp. 441-471.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We investigate the Galois group $G_S(p)$ of the maximal $p$-extension unramified outside a finite set $S$ of primes of a number field in the (tame) case, when no prime dividing $p$ is in $S$. We show that the cohomology of $G_S(p)$ is `often' isomorphic to the étale cohomology of the scheme $\Spec({\O}_k \sm S)$, in particular, $G_S(p)$ is of cohomological dimension 2 then.
Classification : 11R34, 12G10
Keywords: Galois cohomology, restricted ramification, cohomological dimension
@article{DOCMA_2007__12__a8,
     author = {Schmidt, Alexander},
     title = {Rings of integers of type $K(\pi,1)$},
     journal = {Documenta mathematica},
     pages = {441--471},
     publisher = {mathdoc},
     volume = {12},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a8/}
}
TY  - JOUR
AU  - Schmidt, Alexander
TI  - Rings of integers of type $K(\pi,1)$
JO  - Documenta mathematica
PY  - 2007
SP  - 441
EP  - 471
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a8/
LA  - en
ID  - DOCMA_2007__12__a8
ER  - 
%0 Journal Article
%A Schmidt, Alexander
%T Rings of integers of type $K(\pi,1)$
%J Documenta mathematica
%D 2007
%P 441-471
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a8/
%G en
%F DOCMA_2007__12__a8
Schmidt, Alexander. Rings of integers of type $K(\pi,1)$. Documenta mathematica, Tome 12 (2007), pp. 441-471. http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a8/