Rational real algebraic models of topological surfaces
Documenta mathematica, Tome 12 (2007), pp. 549-567.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Comessatti proved that the set of all real points of a rational real algebraic surface is either a nonorientable surface, or diffeomorphic to the sphere or the torus. Conversely, it is well known that each of these surfaces admits at least one rational real algebraic model. We prove that they admit exactly one rational real algebraic model. This was known earlier only for the sphere, the torus, the real projective plane and the Klein bottle.
Classification : 14P25, 14E07
Keywords: real algebraic surface, topological surface, rational surface, rational model, birational map, algebraic diffeomorphism, transitivity, geometrically rational surface, geometrically rational model
@article{DOCMA_2007__12__a4,
     author = {Biswas, Indranil and Huisman, Johannes},
     title = {Rational real algebraic models of topological surfaces},
     journal = {Documenta mathematica},
     pages = {549--567},
     publisher = {mathdoc},
     volume = {12},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a4/}
}
TY  - JOUR
AU  - Biswas, Indranil
AU  - Huisman, Johannes
TI  - Rational real algebraic models of topological surfaces
JO  - Documenta mathematica
PY  - 2007
SP  - 549
EP  - 567
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a4/
LA  - en
ID  - DOCMA_2007__12__a4
ER  - 
%0 Journal Article
%A Biswas, Indranil
%A Huisman, Johannes
%T Rational real algebraic models of topological surfaces
%J Documenta mathematica
%D 2007
%P 549-567
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a4/
%G en
%F DOCMA_2007__12__a4
Biswas, Indranil; Huisman, Johannes. Rational real algebraic models of topological surfaces. Documenta mathematica, Tome 12 (2007), pp. 549-567. http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a4/