De Rham-Witt cohomology and displays
Documenta mathematica, Tome 12 (2007), pp. 147-191.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Displays were introduced to classify formal $p$-divisible groups over an arbitrary ring $R$ where $p$ is nilpotent. We define a more general notion of display and obtain an exact tensor category. In many examples the crystalline cohomology of a smooth and proper scheme $X$ over $R$ carries a natural display structure. It is constructed from the relative de Rham-Witt complex. For this we refine the comparison between crystalline cohomology and de Rham-Witt cohomology of [LZ]. In the case where $R$ is reduced the display structure is related to the strong divisibility condition of Fontaine [Fo].
Classification : 14F30, 14F40
Keywords: crystalline cohomology
@article{DOCMA_2007__12__a16,
     author = {Langer, Andreas and Zink, Thomas},
     title = {De {Rham-Witt} cohomology and displays},
     journal = {Documenta mathematica},
     pages = {147--191},
     publisher = {mathdoc},
     volume = {12},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a16/}
}
TY  - JOUR
AU  - Langer, Andreas
AU  - Zink, Thomas
TI  - De Rham-Witt cohomology and displays
JO  - Documenta mathematica
PY  - 2007
SP  - 147
EP  - 191
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a16/
LA  - en
ID  - DOCMA_2007__12__a16
ER  - 
%0 Journal Article
%A Langer, Andreas
%A Zink, Thomas
%T De Rham-Witt cohomology and displays
%J Documenta mathematica
%D 2007
%P 147-191
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a16/
%G en
%F DOCMA_2007__12__a16
Langer, Andreas; Zink, Thomas. De Rham-Witt cohomology and displays. Documenta mathematica, Tome 12 (2007), pp. 147-191. http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a16/