The Hirzebruch-Mumford volume for the orthogonal group and applications
Documenta mathematica, Tome 12 (2007), pp. 215-241.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we derive an explicit formula for the Hirzebruch-Mumford volume of an indefinite lattice $L$ of rank $\ge 3$. If $\Gamma \subset \Orth(L)$ is an arithmetic subgroup and $L$ has signature $(2,n)$, then an application of Hirzebruch-Mumford proportionality allows us to determine the leading term of the growth of the dimension of the spaces $S_k(\Gamma)$ of cusp forms of weight $k$, as $k$ goes to infinity. We compute this in a number of examples, which are important for geometric applications.
Classification : 11F55, 32N15, 14G35
@article{DOCMA_2007__12__a14,
     author = {Gritsenko, V. and Hulek, K. and Sankaran, G.K.},
     title = {The {Hirzebruch-Mumford} volume for the orthogonal group and applications},
     journal = {Documenta mathematica},
     pages = {215--241},
     publisher = {mathdoc},
     volume = {12},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a14/}
}
TY  - JOUR
AU  - Gritsenko, V.
AU  - Hulek, K.
AU  - Sankaran, G.K.
TI  - The Hirzebruch-Mumford volume for the orthogonal group and applications
JO  - Documenta mathematica
PY  - 2007
SP  - 215
EP  - 241
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a14/
LA  - en
ID  - DOCMA_2007__12__a14
ER  - 
%0 Journal Article
%A Gritsenko, V.
%A Hulek, K.
%A Sankaran, G.K.
%T The Hirzebruch-Mumford volume for the orthogonal group and applications
%J Documenta mathematica
%D 2007
%P 215-241
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a14/
%G en
%F DOCMA_2007__12__a14
Gritsenko, V.; Hulek, K.; Sankaran, G.K. The Hirzebruch-Mumford volume for the orthogonal group and applications. Documenta mathematica, Tome 12 (2007), pp. 215-241. http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a14/