Construction of eigenvarieties in small cohomological dimensions for semi-simple, simply connected groups
Documenta mathematica, Tome 12 (2007), pp. 363-397.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study low order terms of Emerton's spectral sequence for simply connected, simple groups. As a result, for real rank 1 groups, we show that Emerton's method for constructing eigenvarieties is successful in cohomological dimension 1. For real rank 2 groups, we show that a slight modification of Emerton's method allows one to construct eigenvarieties in cohomological dimension 2.
Classification : 11F33
@article{DOCMA_2007__12__a10,
     author = {Hill, Richard},
     title = {Construction of eigenvarieties in small cohomological dimensions for semi-simple, simply connected groups},
     journal = {Documenta mathematica},
     pages = {363--397},
     publisher = {mathdoc},
     volume = {12},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a10/}
}
TY  - JOUR
AU  - Hill, Richard
TI  - Construction of eigenvarieties in small cohomological dimensions for semi-simple, simply connected groups
JO  - Documenta mathematica
PY  - 2007
SP  - 363
EP  - 397
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a10/
LA  - en
ID  - DOCMA_2007__12__a10
ER  - 
%0 Journal Article
%A Hill, Richard
%T Construction of eigenvarieties in small cohomological dimensions for semi-simple, simply connected groups
%J Documenta mathematica
%D 2007
%P 363-397
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a10/
%G en
%F DOCMA_2007__12__a10
Hill, Richard. Construction of eigenvarieties in small cohomological dimensions for semi-simple, simply connected groups. Documenta mathematica, Tome 12 (2007), pp. 363-397. http://geodesic.mathdoc.fr/item/DOCMA_2007__12__a10/