On the image of $l$-adic Galois representations for abelian varieties of type I and II
Documenta mathematica, John H. Coates' Sixtieth Birthday (2006), pp. 35-75.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this paper we investigate the image of the $l$-adic representation attached to the Tate module of an abelian variety over a number field with endomorphism algebra of type I or II in the Albert classification. We compute the image explicitly and verify the classical conjectures of Mumford-Tate, Hodge, Lang and Tate for a large family of abelian varieties of type I and II. In addition, for this family, we prove an analogue of the open image theorem of Serre.
Classification : 11F80, 11G10
Keywords: abelian varieties, $l$-adic representations
@article{DOCMA_2006__S5__a22,
     author = {Banaszak, G. and Gajda, W. and Kraso\'n, P.},
     title = {On the image of $l$-adic {Galois} representations for abelian varieties of type {I} and {II}},
     journal = {Documenta mathematica},
     pages = {35--75},
     publisher = {mathdoc},
     volume = {John H. Coates' Sixtieth Birthday},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a22/}
}
TY  - JOUR
AU  - Banaszak, G.
AU  - Gajda, W.
AU  - Krasoń, P.
TI  - On the image of $l$-adic Galois representations for abelian varieties of type I and II
JO  - Documenta mathematica
PY  - 2006
SP  - 35
EP  - 75
VL  - John H. Coates' Sixtieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a22/
LA  - en
ID  - DOCMA_2006__S5__a22
ER  - 
%0 Journal Article
%A Banaszak, G.
%A Gajda, W.
%A Krasoń, P.
%T On the image of $l$-adic Galois representations for abelian varieties of type I and II
%J Documenta mathematica
%D 2006
%P 35-75
%V John H. Coates' Sixtieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a22/
%G en
%F DOCMA_2006__S5__a22
Banaszak, G.; Gajda, W.; Krasoń, P. On the image of $l$-adic Galois representations for abelian varieties of type I and II. Documenta mathematica, John H. Coates' Sixtieth Birthday (2006), pp. 35-75. http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a22/