On the meromorphic continuation of degree two $L$-functions
Documenta mathematica, John H. Coates' Sixtieth Birthday (2006), pp. 729-779.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We prove that the L-function of any regular (distinct Hodge numbers), irreducible, rank two motive over the rational numbers has meromorphic continuation to the whole complex plane and satisfies the expected functional equation.
Classification : 11R39, 11F80, 11G40, 11F41, 11F70
Keywords: Galois representation, modularity, $L$-function, meromorphic continuation, Fontaine-Mazur conjecture, Hilbert modular form
@article{DOCMA_2006__S5__a2,
     author = {Taylor, Richard},
     title = {On the meromorphic continuation of degree two $L$-functions},
     journal = {Documenta mathematica},
     pages = {729--779},
     publisher = {mathdoc},
     volume = {John H. Coates' Sixtieth Birthday},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a2/}
}
TY  - JOUR
AU  - Taylor, Richard
TI  - On the meromorphic continuation of degree two $L$-functions
JO  - Documenta mathematica
PY  - 2006
SP  - 729
EP  - 779
VL  - John H. Coates' Sixtieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a2/
LA  - en
ID  - DOCMA_2006__S5__a2
ER  - 
%0 Journal Article
%A Taylor, Richard
%T On the meromorphic continuation of degree two $L$-functions
%J Documenta mathematica
%D 2006
%P 729-779
%V John H. Coates' Sixtieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a2/
%G en
%F DOCMA_2006__S5__a2
Taylor, Richard. On the meromorphic continuation of degree two $L$-functions. Documenta mathematica, John H. Coates' Sixtieth Birthday (2006), pp. 729-779. http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a2/