The 2-adic eigencurve is proper
Documenta mathematica, John H. Coates' Sixtieth Birthday (2006), pp. 211-232.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Coleman and Mazur ask whether the Eigencurve has any "holes". We answer their question in the negative for the $2$-adic Eigencurve of tame level one.
Classification : 11F33, 11F85
Keywords: modular forms, modular curves, $U$-operator, overconvergent modular form
@article{DOCMA_2006__S5__a18,
     author = {Buzzard, Kevin and Calegari, Frank},
     title = {The 2-adic eigencurve is proper},
     journal = {Documenta mathematica},
     pages = {211--232},
     publisher = {mathdoc},
     volume = {John H. Coates' Sixtieth Birthday},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a18/}
}
TY  - JOUR
AU  - Buzzard, Kevin
AU  - Calegari, Frank
TI  - The 2-adic eigencurve is proper
JO  - Documenta mathematica
PY  - 2006
SP  - 211
EP  - 232
VL  - John H. Coates' Sixtieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a18/
LA  - en
ID  - DOCMA_2006__S5__a18
ER  - 
%0 Journal Article
%A Buzzard, Kevin
%A Calegari, Frank
%T The 2-adic eigencurve is proper
%J Documenta mathematica
%D 2006
%P 211-232
%V John H. Coates' Sixtieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a18/
%G en
%F DOCMA_2006__S5__a18
Buzzard, Kevin; Calegari, Frank. The 2-adic eigencurve is proper. Documenta mathematica, John H. Coates' Sixtieth Birthday (2006), pp. 211-232. http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a18/