$\Lambda$-adic Euler characteristics of elliptic curves
Documenta mathematica, John H. Coates' Sixtieth Birthday (2006), pp. 301-323.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $E_{/\Bbb Q}$ be a modular elliptic curve, and $p>3$ a good ordinary or semistable prime. Under mild hypotheses, we prove an exact formula for the $\mu$-invariant associated to the weight-deformation of the Tate module of $E$. For example, at ordinary primes in the range $3100$, the result implies the triviality of the $\mu$-invariant of $X_0(11)$.
Classification : 11R23, 11F80, 11G05
Keywords: Euler characteristics, Selmer groups, Tamagawa numbers
@article{DOCMA_2006__S5__a15,
     author = {Delbourgo, Daniel},
     title = {$\Lambda$-adic {Euler} characteristics of elliptic curves},
     journal = {Documenta mathematica},
     pages = {301--323},
     publisher = {mathdoc},
     volume = {John H. Coates' Sixtieth Birthday},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a15/}
}
TY  - JOUR
AU  - Delbourgo, Daniel
TI  - $\Lambda$-adic Euler characteristics of elliptic curves
JO  - Documenta mathematica
PY  - 2006
SP  - 301
EP  - 323
VL  - John H. Coates' Sixtieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a15/
LA  - en
ID  - DOCMA_2006__S5__a15
ER  - 
%0 Journal Article
%A Delbourgo, Daniel
%T $\Lambda$-adic Euler characteristics of elliptic curves
%J Documenta mathematica
%D 2006
%P 301-323
%V John H. Coates' Sixtieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a15/
%G en
%F DOCMA_2006__S5__a15
Delbourgo, Daniel. $\Lambda$-adic Euler characteristics of elliptic curves. Documenta mathematica, John H. Coates' Sixtieth Birthday (2006), pp. 301-323. http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a15/