Optimal levels for modular mod 2 representations over totally real fields
Documenta mathematica, John H. Coates' Sixtieth Birthday (2006), pp. 533-550.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this paper, we study the level lowering problem for mod 2 representations of the absolute Galois group of a totally real field ${F}$. In the case ${F}=\Bbb Q$, this was done by Buzzard; here, we generalise some of Buzzard's results to higher weight and arbitrary totally real fields, using Rajaei's generalisation of Ribet's theorem and previous work of Fujiwara and the author.
Classification : 11F33, 11F80, 11F41, 11G18, 14G35
Keywords: Hilbert modular forms, totally real fields, Galois representations
@article{DOCMA_2006__S5__a10,
     author = {Jarvis, Frazer},
     title = {Optimal levels for modular mod 2 representations over totally real fields},
     journal = {Documenta mathematica},
     pages = {533--550},
     publisher = {mathdoc},
     volume = {John H. Coates' Sixtieth Birthday},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a10/}
}
TY  - JOUR
AU  - Jarvis, Frazer
TI  - Optimal levels for modular mod 2 representations over totally real fields
JO  - Documenta mathematica
PY  - 2006
SP  - 533
EP  - 550
VL  - John H. Coates' Sixtieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a10/
LA  - en
ID  - DOCMA_2006__S5__a10
ER  - 
%0 Journal Article
%A Jarvis, Frazer
%T Optimal levels for modular mod 2 representations over totally real fields
%J Documenta mathematica
%D 2006
%P 533-550
%V John H. Coates' Sixtieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a10/
%G en
%F DOCMA_2006__S5__a10
Jarvis, Frazer. Optimal levels for modular mod 2 representations over totally real fields. Documenta mathematica, John H. Coates' Sixtieth Birthday (2006), pp. 533-550. http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a10/