On $p$-adic geometric representations of $G_{\Bbb Q}$.
Documenta mathematica, John H. Coates' Sixtieth Birthday (2006), pp. 819-827.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

A conjecture of Fontaine and Mazur states that a geometric odd irreducible $p$-adic representation $\rho$ of the Galois group of $\Bbb Q$ comes from a modular form ([FM95]). Dieulefait proved that, under certain hypotheses, $\rho$ is a member of a compatible system of $\ell$-adic representations, as predicted by the conjecture ([Dieu]). Thanks to recent results of Kisin (Mark), we are able to apply the method of Dieulefait under weaker hypotheses. This is useful in the proof of Serre's conjecture (Serre) given in KW1, K,KW2,KW3.
Classification : 11F80, 11R39
@article{DOCMA_2006__S5__a0,
     author = {Wintenberger, J.-P.},
     title = {On $p$-adic geometric representations of $G_{\Bbb Q}$.},
     journal = {Documenta mathematica},
     pages = {819--827},
     publisher = {mathdoc},
     volume = {John H. Coates' Sixtieth Birthday},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a0/}
}
TY  - JOUR
AU  - Wintenberger, J.-P.
TI  - On $p$-adic geometric representations of $G_{\Bbb Q}$.
JO  - Documenta mathematica
PY  - 2006
SP  - 819
EP  - 827
VL  - John H. Coates' Sixtieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a0/
LA  - en
ID  - DOCMA_2006__S5__a0
ER  - 
%0 Journal Article
%A Wintenberger, J.-P.
%T On $p$-adic geometric representations of $G_{\Bbb Q}$.
%J Documenta mathematica
%D 2006
%P 819-827
%V John H. Coates' Sixtieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a0/
%G en
%F DOCMA_2006__S5__a0
Wintenberger, J.-P. On $p$-adic geometric representations of $G_{\Bbb Q}$.. Documenta mathematica, John H. Coates' Sixtieth Birthday (2006), pp. 819-827. http://geodesic.mathdoc.fr/item/DOCMA_2006__S5__a0/