Koszul duality and equivariant cohomology
Documenta mathematica, Tome 11 (2006), pp. 243-259.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $G$ be a topological group such that its homology $H(G)$ with coefficients in a principal ideal domain $R$ is an exterior algebra, generated in odd degrees. We show that the singular cochain functor carries the duality between $G$-spaces and spaces over $BG$ to the Koszul duality between modules up to homotopy over $H(G)$ and $H^*(BG)$. This gives in particular a Cartan-type model for the equivariant cohomology of a $G$-space with coefficients in $R$. As another corollary, we obtain a multiplicative quasi-isomorphism $C^*(BG)\to H^*(BG)$. A key step in the proof is to show that a differential Hopf algebra is formal in the category of $A_\infty$ algebras provided that it is free over $R$ and its homology an exterior algebra.
Classification : 16S37, 55N91, 16E45, 55N10
@article{DOCMA_2006__11__a8,
     author = {Franz, Matthias},
     title = {Koszul duality and equivariant cohomology},
     journal = {Documenta mathematica},
     pages = {243--259},
     publisher = {mathdoc},
     volume = {11},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a8/}
}
TY  - JOUR
AU  - Franz, Matthias
TI  - Koszul duality and equivariant cohomology
JO  - Documenta mathematica
PY  - 2006
SP  - 243
EP  - 259
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a8/
LA  - en
ID  - DOCMA_2006__11__a8
ER  - 
%0 Journal Article
%A Franz, Matthias
%T Koszul duality and equivariant cohomology
%J Documenta mathematica
%D 2006
%P 243-259
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a8/
%G en
%F DOCMA_2006__11__a8
Franz, Matthias. Koszul duality and equivariant cohomology. Documenta mathematica, Tome 11 (2006), pp. 243-259. http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a8/