Strictly convex drawings of planar graphs
Documenta mathematica, Tome 11 (2006), pp. 369-391.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Every three-connected planar graph with $n$ vertices has a drawing on an $O(n^2) \times O(n^2)$ grid in which all faces are strictly convex polygons. These drawings are obtained by perturbing (not strictly) convex drawings on $O(n) \times O(n)$ grids. Tighter bounds are obtained when the faces have fewer sides. In the proof, we derive an explicit lower bound on the number of primitive vectors in a triangle.
Classification : 05C62, 52C05
Keywords: graph drawing, planar graphs
@article{DOCMA_2006__11__a5,
     author = {B\'ar\'any, Imre and Rote, G\"unter},
     title = {Strictly convex drawings of planar graphs},
     journal = {Documenta mathematica},
     pages = {369--391},
     publisher = {mathdoc},
     volume = {11},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a5/}
}
TY  - JOUR
AU  - Bárány, Imre
AU  - Rote, Günter
TI  - Strictly convex drawings of planar graphs
JO  - Documenta mathematica
PY  - 2006
SP  - 369
EP  - 391
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a5/
LA  - en
ID  - DOCMA_2006__11__a5
ER  - 
%0 Journal Article
%A Bárány, Imre
%A Rote, Günter
%T Strictly convex drawings of planar graphs
%J Documenta mathematica
%D 2006
%P 369-391
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a5/
%G en
%F DOCMA_2006__11__a5
Bárány, Imre; Rote, Günter. Strictly convex drawings of planar graphs. Documenta mathematica, Tome 11 (2006), pp. 369-391. http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a5/