On packing spheres into containers
Documenta mathematica, Tome 11 (2006), pp. 393-406.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In an Euclidean $d$-space, the container problem asks to pack $n$ equally sized spheres into a minimal dilate of a fixed container. If the container is a smooth convex body and $d\geq 2$ we show that solutions to the container problem can not have a "simple structure" for large $n$. By this we in particular find that there exist arbitrary small $r>0$, such that packings in a smooth, 3-dimensional convex body, with a maximum number of spheres of radius $r$, are necessarily not hexagonal close packings. This contradicts Kepler's famous statement that the cubic or hexagonal close packing "will be the tightest possible, so that in no other arrangement more spheres could be packed into the same container".
Classification : 52C17, 01A45, 05B40
Keywords: sphere packing, Kepler, container problem
@article{DOCMA_2006__11__a4,
     author = {Sch\"urmann, Achill},
     title = {On packing spheres into containers},
     journal = {Documenta mathematica},
     pages = {393--406},
     publisher = {mathdoc},
     volume = {11},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a4/}
}
TY  - JOUR
AU  - Schürmann, Achill
TI  - On packing spheres into containers
JO  - Documenta mathematica
PY  - 2006
SP  - 393
EP  - 406
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a4/
LA  - en
ID  - DOCMA_2006__11__a4
ER  - 
%0 Journal Article
%A Schürmann, Achill
%T On packing spheres into containers
%J Documenta mathematica
%D 2006
%P 393-406
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a4/
%G en
%F DOCMA_2006__11__a4
Schürmann, Achill. On packing spheres into containers. Documenta mathematica, Tome 11 (2006), pp. 393-406. http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a4/