A symplectic approach to van den Ban's convexity theorem
Documenta mathematica, Tome 11 (2006), pp. 407-424.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $G$ be a complex semisimple Lie group and $\tau$ a complex antilinear involution that commutes with a Cartan involution. If $H$ denotes the connected subgroup of $\tau$-fixed points in $G$, and $K$ is maximally compact, each $H$-orbit in $G/K$ can be equipped with a Poisson structure as described by Evens and Lu. We consider symplectic leaves of certain such $H$-orbits with a natural Hamiltonian torus action. A symplectic convexity theorem then leads to van den Ban's convexity result for (complex) semisimple symmetric spaces.
Classification : 53D17, 53D20, 22E46
Keywords: Lie group, real form, Poisson manifold, symplectic leaf, moment map, convex cone
@article{DOCMA_2006__11__a3,
     author = {Foth, Philip and Otto, Michael},
     title = {A symplectic approach to van den {Ban's} convexity theorem},
     journal = {Documenta mathematica},
     pages = {407--424},
     publisher = {mathdoc},
     volume = {11},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a3/}
}
TY  - JOUR
AU  - Foth, Philip
AU  - Otto, Michael
TI  - A symplectic approach to van den Ban's convexity theorem
JO  - Documenta mathematica
PY  - 2006
SP  - 407
EP  - 424
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a3/
LA  - en
ID  - DOCMA_2006__11__a3
ER  - 
%0 Journal Article
%A Foth, Philip
%A Otto, Michael
%T A symplectic approach to van den Ban's convexity theorem
%J Documenta mathematica
%D 2006
%P 407-424
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a3/
%G en
%F DOCMA_2006__11__a3
Foth, Philip; Otto, Michael. A symplectic approach to van den Ban's convexity theorem. Documenta mathematica, Tome 11 (2006), pp. 407-424. http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a3/