On the equivariant Tamagawa number conjecture for Abelian extensions of a quadratic imaginary field
Documenta mathematica, Tome 11 (2006), pp. 73-118.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $k$ be a quadratic imaginary field, $p$ a prime which splits in $k/\Qu$ and does not divide the class number $h_k$ of $k$. Let $L$ denote a finite abelian extension of $k$ and let $K$ be a subextension of $L/k$. In this article we prove the $p$-part of the Equivariant Tamagawa Number Conjecture for the pair $(h^0(\Spec(L)), \Ze[\Gal(L/K)])$.
Classification : 11G40, 11R23, 11R33, 11R65
Keywords: L-functions, Iwasawa theory, Euler systems
@article{DOCMA_2006__11__a14,
     author = {Bley, W.},
     title = {On the equivariant {Tamagawa} number conjecture for {Abelian} extensions of a quadratic imaginary field},
     journal = {Documenta mathematica},
     pages = {73--118},
     publisher = {mathdoc},
     volume = {11},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a14/}
}
TY  - JOUR
AU  - Bley, W.
TI  - On the equivariant Tamagawa number conjecture for Abelian extensions of a quadratic imaginary field
JO  - Documenta mathematica
PY  - 2006
SP  - 73
EP  - 118
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a14/
LA  - en
ID  - DOCMA_2006__11__a14
ER  - 
%0 Journal Article
%A Bley, W.
%T On the equivariant Tamagawa number conjecture for Abelian extensions of a quadratic imaginary field
%J Documenta mathematica
%D 2006
%P 73-118
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a14/
%G en
%F DOCMA_2006__11__a14
Bley, W. On the equivariant Tamagawa number conjecture for Abelian extensions of a quadratic imaginary field. Documenta mathematica, Tome 11 (2006), pp. 73-118. http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a14/