Capacité associée à un courant positif fermé
Documenta mathematica, Tome 11 (2006), pp. 469-486.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $\Omega$ be an open set of $\mathbb{C}^n$ and $T$ be a positive closed current of dimension $p\geq 1$ on $\Omega$, we define a capacity associated to $T$ by: $$C_T(K,\Omega)=C_T(K)={sup} \left\{\ds\int_K{T\wedge(dd^c v)^p,\ v\in {psh}(\Omega),\ 01}\right\}$$ where $K$ is a compact set of $\Omega$. We prove, in the same way as Bedford-Taylor, that a locally bounded plurisubharmonic function is quasi-continuous with respect to $C_T$. In the second part we define the convergence relatively to $C_T$ and we prove that if $(u_j)$ is a family of locally uniformly bounded plurisubharmonic functions and $u$ is a locally bounded plurisubharmonic function such that $u_j \rightarrow u$ relatively to $C_T$ then $T\wedge (dd^cu_j)^p\rightarrow T\wedge (dd^cu)^p$ in the current sense.
Classification : 32C30, 31C10, 31A15, 32W20
Keywords: Courant positif, plurisousharmonique , capacité, operateur de Monge Ampère
@article{DOCMA_2006__11__a0,
     author = {Khalifa, Dabbek and Fredj, Elkhadhra},
     title = {Capacit\'e associ\'ee \`a un courant positif ferm\'e},
     journal = {Documenta mathematica},
     pages = {469--486},
     publisher = {mathdoc},
     volume = {11},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a0/}
}
TY  - JOUR
AU  - Khalifa, Dabbek
AU  - Fredj, Elkhadhra
TI  - Capacité associée à un courant positif fermé
JO  - Documenta mathematica
PY  - 2006
SP  - 469
EP  - 486
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a0/
LA  - en
ID  - DOCMA_2006__11__a0
ER  - 
%0 Journal Article
%A Khalifa, Dabbek
%A Fredj, Elkhadhra
%T Capacité associée à un courant positif fermé
%J Documenta mathematica
%D 2006
%P 469-486
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a0/
%G en
%F DOCMA_2006__11__a0
Khalifa, Dabbek; Fredj, Elkhadhra. Capacité associée à un courant positif fermé. Documenta mathematica, Tome 11 (2006), pp. 469-486. http://geodesic.mathdoc.fr/item/DOCMA_2006__11__a0/