Algebraic $K$-theory and sums-of-squares formulas
Documenta mathematica, Tome 10 (2005), pp. 357-366.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove a result about the existence of certain `sums-of-squares' formulas over a field $F$. A classical theorem uses topological $K$-theory to show that if such a formula exists over $\mathbb R$, then certain powers of 2 must divide certain binomial coefficients. In this paper we use algebraic $K$-theory to extend the result to all fields not of characteristic 2.
@article{DOCMA_2005__10__a9,
     author = {Dugger, Daniel and Isaksen, Daniel C.},
     title = {Algebraic $K$-theory and sums-of-squares formulas},
     journal = {Documenta mathematica},
     pages = {357--366},
     publisher = {mathdoc},
     volume = {10},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a9/}
}
TY  - JOUR
AU  - Dugger, Daniel
AU  - Isaksen, Daniel C.
TI  - Algebraic $K$-theory and sums-of-squares formulas
JO  - Documenta mathematica
PY  - 2005
SP  - 357
EP  - 366
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a9/
LA  - en
ID  - DOCMA_2005__10__a9
ER  - 
%0 Journal Article
%A Dugger, Daniel
%A Isaksen, Daniel C.
%T Algebraic $K$-theory and sums-of-squares formulas
%J Documenta mathematica
%D 2005
%P 357-366
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a9/
%G en
%F DOCMA_2005__10__a9
Dugger, Daniel; Isaksen, Daniel C. Algebraic $K$-theory and sums-of-squares formulas. Documenta mathematica, Tome 10 (2005), pp. 357-366. http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a9/