Parametrized braid groups of Chevalley groups.
Documenta mathematica, Tome 10 (2005), pp. 391-416.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We introduce the notion of a braid group parametrized by a ring, which is defined by generators and relations and based on the geometric idea of painted braids. We show that the parametrized braid group is isomorphic to the semi-direct product of the Steinberg group (of the ring) with the classical braid group. The technical heart of the proof is the Pure Braid Lemma, which asserts that certain elements of the parametrized braid group commute with the pure braid group. This first part treats the case of the root system $A_n$; in the second part we prove a similar theorem for the root system $D_n$.
Classification : 20F36, 19Cxx, 20F55
Keywords: braid group, Steinberg group, parametrized braid group, root system
@article{DOCMA_2005__10__a6,
     author = {Loday, Jean-Louis and Stein, Michael R.},
     title = {Parametrized braid groups of {Chevalley} groups.},
     journal = {Documenta mathematica},
     pages = {391--416},
     publisher = {mathdoc},
     volume = {10},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a6/}
}
TY  - JOUR
AU  - Loday, Jean-Louis
AU  - Stein, Michael R.
TI  - Parametrized braid groups of Chevalley groups.
JO  - Documenta mathematica
PY  - 2005
SP  - 391
EP  - 416
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a6/
LA  - en
ID  - DOCMA_2005__10__a6
ER  - 
%0 Journal Article
%A Loday, Jean-Louis
%A Stein, Michael R.
%T Parametrized braid groups of Chevalley groups.
%J Documenta mathematica
%D 2005
%P 391-416
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a6/
%G en
%F DOCMA_2005__10__a6
Loday, Jean-Louis; Stein, Michael R. Parametrized braid groups of Chevalley groups.. Documenta mathematica, Tome 10 (2005), pp. 391-416. http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a6/