Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms
Documenta mathematica, Tome 10 (2005), pp. 217-245.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The $L^2$-metric or Fubini-Study metric on the non-linear Grassmannian of all submanifolds of type $M$ in a Riemannian manifold $(N,g)$ induces geodesic distance 0. We discuss another metric which involves the mean curvature and shows that its geodesic distance is a good topological metric. The vanishing phenomenon for the geodesic distance holds also for all diffeomorphism groups for the $L^2$-metric.
Classification : 58B20, 58D15, 58E12
@article{DOCMA_2005__10__a14,
     author = {Michor, Peter W. and Mumford, David},
     title = {Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms},
     journal = {Documenta mathematica},
     pages = {217--245},
     publisher = {mathdoc},
     volume = {10},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a14/}
}
TY  - JOUR
AU  - Michor, Peter W.
AU  - Mumford, David
TI  - Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms
JO  - Documenta mathematica
PY  - 2005
SP  - 217
EP  - 245
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a14/
LA  - en
ID  - DOCMA_2005__10__a14
ER  - 
%0 Journal Article
%A Michor, Peter W.
%A Mumford, David
%T Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms
%J Documenta mathematica
%D 2005
%P 217-245
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a14/
%G en
%F DOCMA_2005__10__a14
Michor, Peter W.; Mumford, David. Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Documenta mathematica, Tome 10 (2005), pp. 217-245. http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a14/