The microstates free entropy dimension of any DT--operator is 2
Documenta mathematica, Tome 10 (2005), pp. 247-261.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Suppose that $\mu$ is an arbitrary Borel measure on $\mathbb C$ with compact support and $c >0$. If $Z$ is a DT$(\mu,c)$--operator as defined by Dykema and Haagerup in citedykema-haagerup:DT, then the microstates free entropy dimension of $Z$ is 2.
Classification : 46L54, 28A78
@article{DOCMA_2005__10__a13,
     author = {Dykema, Ken and Jung, Kenley and Shlyakhtenko, Dimitri},
     title = {The microstates free entropy dimension of any {DT--operator} is 2},
     journal = {Documenta mathematica},
     pages = {247--261},
     publisher = {mathdoc},
     volume = {10},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a13/}
}
TY  - JOUR
AU  - Dykema, Ken
AU  - Jung, Kenley
AU  - Shlyakhtenko, Dimitri
TI  - The microstates free entropy dimension of any DT--operator is 2
JO  - Documenta mathematica
PY  - 2005
SP  - 247
EP  - 261
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a13/
LA  - en
ID  - DOCMA_2005__10__a13
ER  - 
%0 Journal Article
%A Dykema, Ken
%A Jung, Kenley
%A Shlyakhtenko, Dimitri
%T The microstates free entropy dimension of any DT--operator is 2
%J Documenta mathematica
%D 2005
%P 247-261
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a13/
%G en
%F DOCMA_2005__10__a13
Dykema, Ken; Jung, Kenley; Shlyakhtenko, Dimitri. The microstates free entropy dimension of any DT--operator is 2. Documenta mathematica, Tome 10 (2005), pp. 247-261. http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a13/