CM points and quaternion algebras
Documenta mathematica, Tome 10 (2005), pp. 263-309.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper provides a proof of a technical result (Corollary 2.10 of Theorem 2.9) which is an essential ingredient in our proof of Mazur's conjecture over totally real number fields [3].
Classification : 14G35, 11G18, 11G15
Keywords: Shimura curves, CM points
@article{DOCMA_2005__10__a12,
     author = {Cornut, C. and Vatsal, V.},
     title = {CM points and quaternion algebras},
     journal = {Documenta mathematica},
     pages = {263--309},
     publisher = {mathdoc},
     volume = {10},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a12/}
}
TY  - JOUR
AU  - Cornut, C.
AU  - Vatsal, V.
TI  - CM points and quaternion algebras
JO  - Documenta mathematica
PY  - 2005
SP  - 263
EP  - 309
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a12/
LA  - en
ID  - DOCMA_2005__10__a12
ER  - 
%0 Journal Article
%A Cornut, C.
%A Vatsal, V.
%T CM points and quaternion algebras
%J Documenta mathematica
%D 2005
%P 263-309
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a12/
%G en
%F DOCMA_2005__10__a12
Cornut, C.; Vatsal, V. CM points and quaternion algebras. Documenta mathematica, Tome 10 (2005), pp. 263-309. http://geodesic.mathdoc.fr/item/DOCMA_2005__10__a12/