On connecting orbits of semilinear parabolic equations on $S^1$
Documenta mathematica, Tome 9 (2004), pp. 435-469.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It is well-known that any bounded orbit of semilinear parabolic equations of the form [ u_t=u_xx+$f(u,u_x)$, x$\in S^1={\mathbb R}/{\mathbb Z}$, t>0, ] converges to steady states or rotating waves (non-constant solutions of the form $U(x-ct))$ under suitable conditions on $f$. Let $S$ be the set of steady states and rotating waves (up to shift). Introducing new concepts --- the $\it $clusters and the $\it $structure of $S$ ---, we clarify, to a large extent, the heteroclinic connections within $S$; that is, we study which $u\in S$ and $v\in S$ are connected heteroclinically and which are not, under various conditions. We also show that $\sharp S\geq N+\sum_{j=1}^N [[\sqrt{(f_u(r_j,0))_+}/(2\pi )]]$ where $\{r_j\}_{j=1}^N$ is the set of the roots of $f(\,\cdot\, ,0)$ and $[[y]]$ denotes the largest integer that is strictly smaller than $y$. In paticular, if the above equality holds or if $f$ depends only on $u$, the $\it $structure of $S$ completely determines the heteroclinic connections.
Classification : 35B41, 34C29
Keywords: global attractor, heteroclinic orbit, zero number, semilinear parabolic equation
@article{DOCMA_2004__9__a9,
     author = {Miyamoto, Yasuhito},
     title = {On connecting orbits of semilinear parabolic equations on $S^1$},
     journal = {Documenta mathematica},
     pages = {435--469},
     publisher = {mathdoc},
     volume = {9},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a9/}
}
TY  - JOUR
AU  - Miyamoto, Yasuhito
TI  - On connecting orbits of semilinear parabolic equations on $S^1$
JO  - Documenta mathematica
PY  - 2004
SP  - 435
EP  - 469
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a9/
LA  - en
ID  - DOCMA_2004__9__a9
ER  - 
%0 Journal Article
%A Miyamoto, Yasuhito
%T On connecting orbits of semilinear parabolic equations on $S^1$
%J Documenta mathematica
%D 2004
%P 435-469
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a9/
%G en
%F DOCMA_2004__9__a9
Miyamoto, Yasuhito. On connecting orbits of semilinear parabolic equations on $S^1$. Documenta mathematica, Tome 9 (2004), pp. 435-469. http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a9/