Some remarks on morphisms between Fano threefolds
Documenta mathematica, Tome 9 (2004), pp. 471-486.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $X, Y$ be Fano threefolds of Picard number one and such that the ample generators of Picard groups are very ample. Let $X$ be of index one and $Y$ be of index two. It is shown that the only morphisms from $X$ to $Y$ are double coverings. In fact nearly the whole paper is the analysis of the case where $Y$ is the linear section of the Grassmannian $G(1,4)$, since the other cases were more or less solved in another article. This remaining case is treated with the help of Debarre's connectedness theorem for inverse images of Schubert cycles.
Classification : 14J45
Keywords: Fano threefolds, connectedness
@article{DOCMA_2004__9__a8,
     author = {Amerik, Ekaterina},
     title = {Some remarks on morphisms between {Fano} threefolds},
     journal = {Documenta mathematica},
     pages = {471--486},
     publisher = {mathdoc},
     volume = {9},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a8/}
}
TY  - JOUR
AU  - Amerik, Ekaterina
TI  - Some remarks on morphisms between Fano threefolds
JO  - Documenta mathematica
PY  - 2004
SP  - 471
EP  - 486
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a8/
LA  - en
ID  - DOCMA_2004__9__a8
ER  - 
%0 Journal Article
%A Amerik, Ekaterina
%T Some remarks on morphisms between Fano threefolds
%J Documenta mathematica
%D 2004
%P 471-486
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a8/
%G en
%F DOCMA_2004__9__a8
Amerik, Ekaterina. Some remarks on morphisms between Fano threefolds. Documenta mathematica, Tome 9 (2004), pp. 471-486. http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a8/