Non-Hausdorff groupoids, proper actions and $K$-theory
Documenta mathematica, Tome 9 (2004), pp. 565-597.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $G$ be a (not necessarily Hausdorff) locally compact groupoid. We introduce a notion of properness for $G$, which is invariant under Morita-equivalence. We show that any generalized morphism between two locally compact groupoids which satisfies some properness conditions induces a $C^*$-correspondence from $C^*_r(G_2)$ to $C^*_r(G_1)$, and thus two Morita equivalent groupoids have Morita-equivalent $C^*$-algebras.
Classification : 22A22, 46L05, 46L80, 54D35
Keywords: groupoid, $C^*$-algebra, $K$-theory
@article{DOCMA_2004__9__a4,
     author = {Tu, Jean-Louis},
     title = {Non-Hausdorff groupoids, proper actions and $K$-theory},
     journal = {Documenta mathematica},
     pages = {565--597},
     publisher = {mathdoc},
     volume = {9},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a4/}
}
TY  - JOUR
AU  - Tu, Jean-Louis
TI  - Non-Hausdorff groupoids, proper actions and $K$-theory
JO  - Documenta mathematica
PY  - 2004
SP  - 565
EP  - 597
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a4/
LA  - en
ID  - DOCMA_2004__9__a4
ER  - 
%0 Journal Article
%A Tu, Jean-Louis
%T Non-Hausdorff groupoids, proper actions and $K$-theory
%J Documenta mathematica
%D 2004
%P 565-597
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a4/
%G en
%F DOCMA_2004__9__a4
Tu, Jean-Louis. Non-Hausdorff groupoids, proper actions and $K$-theory. Documenta mathematica, Tome 9 (2004), pp. 565-597. http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a4/