Dihedral Galois representations and Katz modular forms
Documenta mathematica, Tome 9 (2004), pp. 123-133.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show that any two-dimensional odd dihedral representation $\rho$ over a finite field of characteristic $p>0$ of the absolute Galois group of the rational numbers can be obtained from a Katz modular form of level $N$, character $\epsilon$ and weight $k$, where $N$ is the conductor, $\epsilon$ is the prime-to-$p$ part of the determinant and $k$ is the so-called minimal weight of $\rho$. In particular, $k=1$ if and only if $\rho$ is unramified at $p$. Direct arguments are used in the exceptional cases, where general results on weight and level lowering are not available.
Classification : 11F11, 11F80, 14G35
@article{DOCMA_2004__9__a22,
     author = {Wiese, Gabor},
     title = {Dihedral {Galois} representations and {Katz} modular forms},
     journal = {Documenta mathematica},
     pages = {123--133},
     publisher = {mathdoc},
     volume = {9},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a22/}
}
TY  - JOUR
AU  - Wiese, Gabor
TI  - Dihedral Galois representations and Katz modular forms
JO  - Documenta mathematica
PY  - 2004
SP  - 123
EP  - 133
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a22/
LA  - en
ID  - DOCMA_2004__9__a22
ER  - 
%0 Journal Article
%A Wiese, Gabor
%T Dihedral Galois representations and Katz modular forms
%J Documenta mathematica
%D 2004
%P 123-133
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a22/
%G en
%F DOCMA_2004__9__a22
Wiese, Gabor. Dihedral Galois representations and Katz modular forms. Documenta mathematica, Tome 9 (2004), pp. 123-133. http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a22/