The free cover of a row contraction
Documenta mathematica, Tome 9 (2004), pp. 137-161.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We establish the existence and uniqueness of finite free resolutions - and their attendant Betti numbers - for graded commuting $d$-tuples of Hilbert space operators. Our approach is based on the notion of free cover of a (perhaps noncommutative) row contraction. Free covers provide a flexible replacement for minimal dilations that is better suited for higher-dimensional operator theory.
Classification : 46L07, 47A99
Keywords: free resolutions, multivariable operator theory
@article{DOCMA_2004__9__a20,
     author = {Arveson, William},
     title = {The free cover of a row contraction},
     journal = {Documenta mathematica},
     pages = {137--161},
     publisher = {mathdoc},
     volume = {9},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a20/}
}
TY  - JOUR
AU  - Arveson, William
TI  - The free cover of a row contraction
JO  - Documenta mathematica
PY  - 2004
SP  - 137
EP  - 161
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a20/
LA  - en
ID  - DOCMA_2004__9__a20
ER  - 
%0 Journal Article
%A Arveson, William
%T The free cover of a row contraction
%J Documenta mathematica
%D 2004
%P 137-161
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a20/
%G en
%F DOCMA_2004__9__a20
Arveson, William. The free cover of a row contraction. Documenta mathematica, Tome 9 (2004), pp. 137-161. http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a20/