Asymptotic expansions for bounded solutions to semilinear Fuchsian equations
Documenta mathematica, Tome 9 (2004), pp. 207-250.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It is shown that bounded solutions to semilinear elliptic Fuchsian equations obey complete asymptotic expansions in terms of powers and logarithms in the distance to the boundary. For that purpose, Schulze's notion of asymptotic type for conormal asymptotic expansions near a conical point is refined. This in turn allows to perform explicit computations on asymptotic types --- modulo the resolution of the spectral problem for determining the singular exponents in the asymptotic expansions.
Classification : 35J70, 35B40, 35J60
Keywords: calculus of conormal symbols, conormal asymptotic expansions, discrete asymptotic types, weighted Sobolev spaces with discrete asymptotics, semilinear Fuchsian equations
@article{DOCMA_2004__9__a17,
     author = {Liu, Xiaochun and Witt, Ingo},
     title = {Asymptotic expansions for bounded solutions to semilinear {Fuchsian} equations},
     journal = {Documenta mathematica},
     pages = {207--250},
     publisher = {mathdoc},
     volume = {9},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a17/}
}
TY  - JOUR
AU  - Liu, Xiaochun
AU  - Witt, Ingo
TI  - Asymptotic expansions for bounded solutions to semilinear Fuchsian equations
JO  - Documenta mathematica
PY  - 2004
SP  - 207
EP  - 250
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a17/
LA  - en
ID  - DOCMA_2004__9__a17
ER  - 
%0 Journal Article
%A Liu, Xiaochun
%A Witt, Ingo
%T Asymptotic expansions for bounded solutions to semilinear Fuchsian equations
%J Documenta mathematica
%D 2004
%P 207-250
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a17/
%G en
%F DOCMA_2004__9__a17
Liu, Xiaochun; Witt, Ingo. Asymptotic expansions for bounded solutions to semilinear Fuchsian equations. Documenta mathematica, Tome 9 (2004), pp. 207-250. http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a17/