Bounds for the anticanonical bundle of a homogeneous projective rational manifold
Documenta mathematica, Tome 9 (2004), pp. 251-263.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The following bounds for the anticanonical bundle $K_X^{*} = \det T_X$ of a complex homogeneous projective rational manifold $X$ of dimension $n$ are established: newcommandbinom[2]#1choose#2 $$ 3^n \le \dim H^0(X,K_X^{*}) \le \binom{2n+1}n\quad\mathrm{and}\quad 2^n n! \le \deg K_X^{*} \le (n+1)^n $$ with equality in the lower bounds if and only if $X$ is a flag manifold and equality in the upper bounds if and only if $X$ is complex projective space. None of these bounds holds for general Fano manifolds.
Classification : 14M17, 14M15, 32M10
@article{DOCMA_2004__9__a16,
     author = {Snow, Dennis},
     title = {Bounds for the anticanonical bundle of a homogeneous projective rational manifold},
     journal = {Documenta mathematica},
     pages = {251--263},
     publisher = {mathdoc},
     volume = {9},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a16/}
}
TY  - JOUR
AU  - Snow, Dennis
TI  - Bounds for the anticanonical bundle of a homogeneous projective rational manifold
JO  - Documenta mathematica
PY  - 2004
SP  - 251
EP  - 263
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a16/
LA  - en
ID  - DOCMA_2004__9__a16
ER  - 
%0 Journal Article
%A Snow, Dennis
%T Bounds for the anticanonical bundle of a homogeneous projective rational manifold
%J Documenta mathematica
%D 2004
%P 251-263
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a16/
%G en
%F DOCMA_2004__9__a16
Snow, Dennis. Bounds for the anticanonical bundle of a homogeneous projective rational manifold. Documenta mathematica, Tome 9 (2004), pp. 251-263. http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a16/