On the values of equivariant zeta functions of curves over finite fields
Documenta mathematica, Tome 9 (2004), pp. 357-399.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $K/k$ be a finite Galois extension of global function fields of characteristic $p$. Let $C_K$ denote the smooth projective curve that has function field $K$ and set $G:= {Gal}(K/k)$. We conjecture a formula for the leading term in the Taylor expansion at zero of the $G$-equivariant truncated Artin $L$-functions of $K/k$ in terms of the Weil-étale cohomology of $\bg_m$ on the corresponding open subschemes of $C_K$. We then prove the $\ell$-primary component of this conjecture for all primes $\ell$ for which either $\ell \not= p$ or the relative algebraic $K$-group $K_0(\bz _\ell [G],\bq_\ell)$ is torsion-free. In the remainder of the manuscript we show that this result has the following consequences for $K/k$: if $p \nmid |G|$, then refined versions of all of Chinburg's `$\Omega$-Conjectures' in Galois module theory are valid; if the torsion subgroup of $K^\times$ is a cohomologically-trivial $G$-module, then Gross's conjectural `refined class number formula' is valid; if $K/k$ satisfies a certain natural class-field theoretical condition, then Tate's recent refinement of Gross's conjecture is valid.
Classification : 11G40, 11R65, 19A31, 19B28
@article{DOCMA_2004__9__a12,
     author = {Burns, David},
     title = {On the values of equivariant zeta functions of curves over finite fields},
     journal = {Documenta mathematica},
     pages = {357--399},
     publisher = {mathdoc},
     volume = {9},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a12/}
}
TY  - JOUR
AU  - Burns, David
TI  - On the values of equivariant zeta functions of curves over finite fields
JO  - Documenta mathematica
PY  - 2004
SP  - 357
EP  - 399
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a12/
LA  - en
ID  - DOCMA_2004__9__a12
ER  - 
%0 Journal Article
%A Burns, David
%T On the values of equivariant zeta functions of curves over finite fields
%J Documenta mathematica
%D 2004
%P 357-399
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a12/
%G en
%F DOCMA_2004__9__a12
Burns, David. On the values of equivariant zeta functions of curves over finite fields. Documenta mathematica, Tome 9 (2004), pp. 357-399. http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a12/