Rational curves on homogeneous cones
Documenta mathematica, Tome 9 (2004), pp. 623-637.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A homogeneous cone $X$ is the cone over a homogeneous variety $G/P$ embedded thanks to an ample line bundle $L$. In this article, we describe the irreducible components of the scheme of morphisms of class $\alpha\in A_1(X)$ from a rational curve to X. The situation depends on the line bundle L : if the projectivised tangent space to the vertex contains lines then the irreducible components are described by the difference between Cartier and Weil divisors. On the contrary if there is no line in the projectivised tangent space to the vertex then there are new irreducible components corresponding to the multiplicity of the curve through the vertex.
Classification : 14C05, 14M17
Keywords: homogeneous cone, scheme of morphisms, rational curves
@article{DOCMA_2004__9__a1,
     author = {Perrin, Nicolas},
     title = {Rational curves on homogeneous cones},
     journal = {Documenta mathematica},
     pages = {623--637},
     publisher = {mathdoc},
     volume = {9},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a1/}
}
TY  - JOUR
AU  - Perrin, Nicolas
TI  - Rational curves on homogeneous cones
JO  - Documenta mathematica
PY  - 2004
SP  - 623
EP  - 637
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a1/
LA  - en
ID  - DOCMA_2004__9__a1
ER  - 
%0 Journal Article
%A Perrin, Nicolas
%T Rational curves on homogeneous cones
%J Documenta mathematica
%D 2004
%P 623-637
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a1/
%G en
%F DOCMA_2004__9__a1
Perrin, Nicolas. Rational curves on homogeneous cones. Documenta mathematica, Tome 9 (2004), pp. 623-637. http://geodesic.mathdoc.fr/item/DOCMA_2004__9__a1/