A bound for the torsion in the $K$-theory of algebraic integers
Documenta mathematica, Kazuya Kato's Fiftieth Birthday (2003), pp. 761-788.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $m$ be an integer bigger than one, $A$ a ring of algebraic integers, $F$ its fraction field, and $K_m (A)$ the $m$-th Quillen $K$-group of $A$. We give a (huge) explicit bound for the order of the torsion subgroup of $K_m (A)$ (up to small primes), in terms of $m$, the degree of $F$ over $\Bbb Q$, and its absolute discriminant.
Classification : 11R70, 19D99, 19F27
@article{DOCMA_2003__S6__a3,
     author = {Soul\'e, Christophe},
     title = {A bound for the torsion in the $K$-theory of algebraic integers},
     journal = {Documenta mathematica},
     pages = {761--788},
     publisher = {mathdoc},
     volume = {Kazuya Kato's Fiftieth Birthday},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2003__S6__a3/}
}
TY  - JOUR
AU  - Soulé, Christophe
TI  - A bound for the torsion in the $K$-theory of algebraic integers
JO  - Documenta mathematica
PY  - 2003
SP  - 761
EP  - 788
VL  - Kazuya Kato's Fiftieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2003__S6__a3/
LA  - en
ID  - DOCMA_2003__S6__a3
ER  - 
%0 Journal Article
%A Soulé, Christophe
%T A bound for the torsion in the $K$-theory of algebraic integers
%J Documenta mathematica
%D 2003
%P 761-788
%V Kazuya Kato's Fiftieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2003__S6__a3/
%G en
%F DOCMA_2003__S6__a3
Soulé, Christophe. A bound for the torsion in the $K$-theory of algebraic integers. Documenta mathematica, Kazuya Kato's Fiftieth Birthday (2003), pp. 761-788. http://geodesic.mathdoc.fr/item/DOCMA_2003__S6__a3/