Stable maps of curves
Documenta mathematica, Kazuya Kato's Fiftieth Birthday (2003), pp. 217-225.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Let $h\colon X\to Y$ be a finite morphism of smooth connected complete curves over ${\bold C}_p$. We show $h$ extends to a finite morphism between semi-stable models of $X$ and $Y$.
Classification : 14H25, 11G20, 14G20, 14G22
@article{DOCMA_2003__S6__a17,
     author = {Coleman, Robert F.},
     title = {Stable maps of curves},
     journal = {Documenta mathematica},
     pages = {217--225},
     publisher = {mathdoc},
     volume = {Kazuya Kato's Fiftieth Birthday},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2003__S6__a17/}
}
TY  - JOUR
AU  - Coleman, Robert F.
TI  - Stable maps of curves
JO  - Documenta mathematica
PY  - 2003
SP  - 217
EP  - 225
VL  - Kazuya Kato's Fiftieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2003__S6__a17/
LA  - en
ID  - DOCMA_2003__S6__a17
ER  - 
%0 Journal Article
%A Coleman, Robert F.
%T Stable maps of curves
%J Documenta mathematica
%D 2003
%P 217-225
%V Kazuya Kato's Fiftieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2003__S6__a17/
%G en
%F DOCMA_2003__S6__a17
Coleman, Robert F. Stable maps of curves. Documenta mathematica, Kazuya Kato's Fiftieth Birthday (2003), pp. 217-225. http://geodesic.mathdoc.fr/item/DOCMA_2003__S6__a17/