Two-variable zeta functions and regularized products
Documenta mathematica, Kazuya Kato's Fiftieth Birthday (2003), pp. 227-259.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

In this paper we prove a regularized product expansion for the two-variable zeta functions of number fields introduced by van der Geer and Schoof. The proof is based on a general criterion for zeta-regularizability due to Illies. For number fields of non-zero unit rank our method involves a result of independent interest about the asymptotic behaviour of certain oscillatory integrals in the geometry of numbers. We also explain the cohomological motivation for the paper.
Classification : 11M36, 11M41
Keywords: zeta function, zeta regularization, oscillatory integral, metrized lattice
@article{DOCMA_2003__S6__a16,
     author = {Deninger, Christopher},
     title = {Two-variable zeta functions and regularized products},
     journal = {Documenta mathematica},
     pages = {227--259},
     publisher = {mathdoc},
     volume = {Kazuya Kato's Fiftieth Birthday},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2003__S6__a16/}
}
TY  - JOUR
AU  - Deninger, Christopher
TI  - Two-variable zeta functions and regularized products
JO  - Documenta mathematica
PY  - 2003
SP  - 227
EP  - 259
VL  - Kazuya Kato's Fiftieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2003__S6__a16/
LA  - en
ID  - DOCMA_2003__S6__a16
ER  - 
%0 Journal Article
%A Deninger, Christopher
%T Two-variable zeta functions and regularized products
%J Documenta mathematica
%D 2003
%P 227-259
%V Kazuya Kato's Fiftieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2003__S6__a16/
%G en
%F DOCMA_2003__S6__a16
Deninger, Christopher. Two-variable zeta functions and regularized products. Documenta mathematica, Kazuya Kato's Fiftieth Birthday (2003), pp. 227-259. http://geodesic.mathdoc.fr/item/DOCMA_2003__S6__a16/