On base change theorem and coherence in rigid cohomology
Documenta mathematica, Kazuya Kato's Fiftieth Birthday (2003), pp. 891-918.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We prove that the base change theorem in rigid cohomology holds when the rigid cohomology sheaves both for the given morphism and for its base extension morphism are coherent. Applying this result, we give a condition under which the rigid cohomology of families becomes an overconvergent isocrystal. Finally, we establish generic coherence of rigid cohomology of proper smooth families under the assumption of existence of a smooth lift of the generic fiber. Then the rigid cohomology becomes an overconvergent isocrystal generically. The assumption is satisfied in the case of families of curves. This example relates to P. Berthelot's conjecture of the overconvergence of rigid cohomology for proper smooth families.
Classification : 14F30, 14F20, 14D15
@article{DOCMA_2003__S6__a0,
     author = {Tsuzuki, Nobuo},
     title = {On base change theorem and coherence in rigid cohomology},
     journal = {Documenta mathematica},
     pages = {891--918},
     publisher = {mathdoc},
     volume = {Kazuya Kato's Fiftieth Birthday},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2003__S6__a0/}
}
TY  - JOUR
AU  - Tsuzuki, Nobuo
TI  - On base change theorem and coherence in rigid cohomology
JO  - Documenta mathematica
PY  - 2003
SP  - 891
EP  - 918
VL  - Kazuya Kato's Fiftieth Birthday
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2003__S6__a0/
LA  - en
ID  - DOCMA_2003__S6__a0
ER  - 
%0 Journal Article
%A Tsuzuki, Nobuo
%T On base change theorem and coherence in rigid cohomology
%J Documenta mathematica
%D 2003
%P 891-918
%V Kazuya Kato's Fiftieth Birthday
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2003__S6__a0/
%G en
%F DOCMA_2003__S6__a0
Tsuzuki, Nobuo. On base change theorem and coherence in rigid cohomology. Documenta mathematica, Kazuya Kato's Fiftieth Birthday (2003), pp. 891-918. http://geodesic.mathdoc.fr/item/DOCMA_2003__S6__a0/