Severi-Brauer varieties of semidirect product algebras.
Documenta mathematica, Tome 8 (2003), pp. 527-546.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A conjecture of Amitsur states that two Severi-Brauer varieties are birationally isomorphic if and only if the underlying algebras are the same degree and generate the same cyclic subgroup of the Brauer group. It is known that generating the same cyclic subgroup is a necessary condition, however it has not yet been shown to be sufficient. In this paper we examine the case where the algebras have a maximal subfield $K/F$ of degree $n$ with Galois closure $E/F$ whose Galois group is of the form $C_n \rtimes H$, where $E^H = K$ and $|H|$ is prime to $n$. For such algebras we show that the conjecture is true for certain cases of $n$ and $H$. In particular we prove the conjecture in the case that $G$ is a dihedral group of order $2p$, where $p$ is prime.
Classification : 16K50, 16S35
Keywords: Brauer groups, Severi-Brauer varieties
@article{DOCMA_2003__8__a4,
     author = {Krashen, Daniel},
     title = {Severi-Brauer varieties of semidirect product algebras.},
     journal = {Documenta mathematica},
     pages = {527--546},
     publisher = {mathdoc},
     volume = {8},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a4/}
}
TY  - JOUR
AU  - Krashen, Daniel
TI  - Severi-Brauer varieties of semidirect product algebras.
JO  - Documenta mathematica
PY  - 2003
SP  - 527
EP  - 546
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a4/
LA  - en
ID  - DOCMA_2003__8__a4
ER  - 
%0 Journal Article
%A Krashen, Daniel
%T Severi-Brauer varieties of semidirect product algebras.
%J Documenta mathematica
%D 2003
%P 527-546
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a4/
%G en
%F DOCMA_2003__8__a4
Krashen, Daniel. Severi-Brauer varieties of semidirect product algebras.. Documenta mathematica, Tome 8 (2003), pp. 527-546. http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a4/