On the scattering theory of the Laplacian with a periodic boundary condition. I. Existence of wave operators
Documenta mathematica, Tome 8 (2003), pp. 547-565.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study spectral and scattering properties of the Laplacian $H^{(\sigma)} = -\Delta$ in $L_2(\R^2_+)$ corresponding to the boundary condition $\frac{\partial u}{\partial\nu} + \sigma u = 0$ for a wide class of periodic functions $\sigma$. The Floquet decomposition leads to problems on an unbounded cell which are analyzed in detail. We prove that the wave operators $W_\pm(H^{(\sigma)},H^{(0)})$ exist.
Classification : 35J10, 35J25, 35P05, 35P25
Keywords: scattering theory, periodic operator, Schrödinger operator, singular potential
@article{DOCMA_2003__8__a3,
     author = {Frank, Rupert L.},
     title = {On the scattering theory of the {Laplacian} with a periodic boundary condition. {I.} {Existence} of wave operators},
     journal = {Documenta mathematica},
     pages = {547--565},
     publisher = {mathdoc},
     volume = {8},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a3/}
}
TY  - JOUR
AU  - Frank, Rupert L.
TI  - On the scattering theory of the Laplacian with a periodic boundary condition. I. Existence of wave operators
JO  - Documenta mathematica
PY  - 2003
SP  - 547
EP  - 565
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a3/
LA  - en
ID  - DOCMA_2003__8__a3
ER  - 
%0 Journal Article
%A Frank, Rupert L.
%T On the scattering theory of the Laplacian with a periodic boundary condition. I. Existence of wave operators
%J Documenta mathematica
%D 2003
%P 547-565
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a3/
%G en
%F DOCMA_2003__8__a3
Frank, Rupert L. On the scattering theory of the Laplacian with a periodic boundary condition. I. Existence of wave operators. Documenta mathematica, Tome 8 (2003), pp. 547-565. http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a3/