On families of pure slope $L$-functions
Documenta mathematica, Tome 8 (2003), pp. 1-42.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $R$ be the ring of integers in a finite extension $K$ of $\mathbb{Q}_p$, let $k$ be its residue field and let $\chi:\pi_1(X)\to R^{\times}=GL_{1}(R)$ be a "geometric" rank one representation of the arithmetic fundamental group of a smooth affine $k$-scheme $X$. We show that the locally $K$-analytic characters $\kappa:R^{\times}\to\mathbb{C}_p^{\times}$ are the $\mathbb{C}_p$-valued points of a $K$-rigid space ${\cal W}$ and that $$L(\kappa\circ\chi,T)=\prod_{\overline{x}\in X}\frac{1}{1-(\kappa \circ\chi)(Frob_{\overline{x}})T^{\deg(\overline{x})}},$$viewed as a two variable function in $T$ and $\kappa$, is meromorphic on $\mathbb{A}_{\mathbb{C}_p}^1\times{\cal W}$. On the way we prove, based on a construction of Wan, a slope decomposition for ordinary overconvergent (finite rank) $\sigma$-modules, in the Grothendieck group of nuclear $\sigma$-modules.
Classification : 14F30, 14G10, 14G13, 14G15, 14G22
@article{DOCMA_2003__8__a18,
     author = {Grosse-Kl\"onne, Elmar},
     title = {On families of pure slope $L$-functions},
     journal = {Documenta mathematica},
     pages = {1--42},
     publisher = {mathdoc},
     volume = {8},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a18/}
}
TY  - JOUR
AU  - Grosse-Klönne, Elmar
TI  - On families of pure slope $L$-functions
JO  - Documenta mathematica
PY  - 2003
SP  - 1
EP  - 42
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a18/
LA  - en
ID  - DOCMA_2003__8__a18
ER  - 
%0 Journal Article
%A Grosse-Klönne, Elmar
%T On families of pure slope $L$-functions
%J Documenta mathematica
%D 2003
%P 1-42
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a18/
%G en
%F DOCMA_2003__8__a18
Grosse-Klönne, Elmar. On families of pure slope $L$-functions. Documenta mathematica, Tome 8 (2003), pp. 1-42. http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a18/