Hasse invariant and group cohomology
Documenta mathematica, Tome 8 (2003), pp. 43-50.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $p\geq5$ be a prime number. The Hasse invariant is a modular form modulo $p$ that is often used to produce congruences between modular forms of different weights. We show how to produce such congruences between eigenforms of weights 2 and $p+1$, in terms of group cohomology. We also illustrate how our method works for inert primes $p\geq5$ in the contexts of quadratic imaginary fields (where there is no Hasse invariant available) and Hilbert modular forms over totally real fields, cyclic and of even degree over the rationals.
Classification : 11F33
@article{DOCMA_2003__8__a17,
     author = {Edixhoven, Bas and Khare, Chandrashekhar},
     title = {Hasse invariant and group cohomology},
     journal = {Documenta mathematica},
     pages = {43--50},
     publisher = {mathdoc},
     volume = {8},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a17/}
}
TY  - JOUR
AU  - Edixhoven, Bas
AU  - Khare, Chandrashekhar
TI  - Hasse invariant and group cohomology
JO  - Documenta mathematica
PY  - 2003
SP  - 43
EP  - 50
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a17/
LA  - en
ID  - DOCMA_2003__8__a17
ER  - 
%0 Journal Article
%A Edixhoven, Bas
%A Khare, Chandrashekhar
%T Hasse invariant and group cohomology
%J Documenta mathematica
%D 2003
%P 43-50
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a17/
%G en
%F DOCMA_2003__8__a17
Edixhoven, Bas; Khare, Chandrashekhar. Hasse invariant and group cohomology. Documenta mathematica, Tome 8 (2003), pp. 43-50. http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a17/