Variations on the Bloch-Ogus theorem
Documenta mathematica, Tome 8 (2003), pp. 51-67.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $R$ be a semi-local regular ring of geometric type over a field $k$. Let $\U=\spec R$ be the semi-local scheme. Consider a smooth proper morphism $p:Y \ra \U$. Let $Y_{k(u)}$ be the fiber over the generic point of a subvariety $u$ of $\U$. We prove that the Gersten-type complex for étale cohomology $$ 0 \ra \het^q(Y,C) \ra \het^q(Y_{k(\U)},C) \ra \coprod_{u\in \U^{(1)}} \het^{q-1}(Y_{k(u)},C(-1)) \ra\ldots $$ is exact, where $C$ is a locally constant sheaf with finite stalks of $\zz/n\zz$-modules on $Y_{et}$ and $n$ is an integer prime to $\chrt(k)$.
Classification : 14F20, 16E05
Keywords: étale cohomology, arithmetic resolution
@article{DOCMA_2003__8__a16,
     author = {Panin, Ivan and Zainoulline, Kirill},
     title = {Variations on the {Bloch-Ogus} theorem},
     journal = {Documenta mathematica},
     pages = {51--67},
     publisher = {mathdoc},
     volume = {8},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a16/}
}
TY  - JOUR
AU  - Panin, Ivan
AU  - Zainoulline, Kirill
TI  - Variations on the Bloch-Ogus theorem
JO  - Documenta mathematica
PY  - 2003
SP  - 51
EP  - 67
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a16/
LA  - en
ID  - DOCMA_2003__8__a16
ER  - 
%0 Journal Article
%A Panin, Ivan
%A Zainoulline, Kirill
%T Variations on the Bloch-Ogus theorem
%J Documenta mathematica
%D 2003
%P 51-67
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a16/
%G en
%F DOCMA_2003__8__a16
Panin, Ivan; Zainoulline, Kirill. Variations on the Bloch-Ogus theorem. Documenta mathematica, Tome 8 (2003), pp. 51-67. http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a16/