A lambda-graph system for the Dyck shift and its $K$-groups
Documenta mathematica, Tome 8 (2003), pp. 79-96.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A property of subshifts is described that allows to associate to the subshift a distinguishied presentation by a compact Shannon graph. For subshifts with this property and for the resulting invariantly associated compact Shannon graphs and their $\lambda$-graph systems the term $\lq $Cantor horizon$\rq $ is proposed. The Dyck shifts are Cantor horizon. The $C^*$-algebras that are obtained from the Cantor horizon $\lambda$-graph systems of the Dyck shifts are separable, unital, nuclear, purely infinite and simple with UCT. The K-groups and Bowen-Franks groups of the Cantor horizon $\lambda$-graph systems of the Dyck shifts are computed and it is found that the $K_0$-groups are not finitely generated.
Classification : 37B10, 46L35
Keywords: subshift, Shannon graph, $\lambda$-graph system, Dyck shift, K-groups, $C^*$-algebra
@article{DOCMA_2003__8__a14,
     author = {Krieger, Wolfgang and Matsumoto, Kengo},
     title = {A lambda-graph system for the {Dyck} shift and its $K$-groups},
     journal = {Documenta mathematica},
     pages = {79--96},
     publisher = {mathdoc},
     volume = {8},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a14/}
}
TY  - JOUR
AU  - Krieger, Wolfgang
AU  - Matsumoto, Kengo
TI  - A lambda-graph system for the Dyck shift and its $K$-groups
JO  - Documenta mathematica
PY  - 2003
SP  - 79
EP  - 96
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a14/
LA  - en
ID  - DOCMA_2003__8__a14
ER  - 
%0 Journal Article
%A Krieger, Wolfgang
%A Matsumoto, Kengo
%T A lambda-graph system for the Dyck shift and its $K$-groups
%J Documenta mathematica
%D 2003
%P 79-96
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a14/
%G en
%F DOCMA_2003__8__a14
Krieger, Wolfgang; Matsumoto, Kengo. A lambda-graph system for the Dyck shift and its $K$-groups. Documenta mathematica, Tome 8 (2003), pp. 79-96. http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a14/