Stability of Arakelov bundles and tensor products without global sections
Documenta mathematica, Tome 8 (2003), pp. 115-123.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper deals with Arakelov vector bundles over an arithmetic curve, i.e. over the set of places of a number field. The main result is that for each semistable bundle E, there is a bundle F such that $E \otimes F$ has at least a certain slope, but no global sections. It is motivated by an analogous theorem of Faltings for vector bundles over algebraic curves and contains the Minkowski-Hlawka theorem on sphere packings as a special case. The proof uses an adelic version of Siegel's mean value formula.
Classification : 14G40, 11H31, 11R56
Keywords: Arakelov bundle, arithmetic curve, tensor product, lattice sphere packing, mean value formula, Minkowski-hlawka theorem
@article{DOCMA_2003__8__a12,
     author = {Hoffmann, Norbert},
     title = {Stability of {Arakelov} bundles and tensor products without global sections},
     journal = {Documenta mathematica},
     pages = {115--123},
     publisher = {mathdoc},
     volume = {8},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a12/}
}
TY  - JOUR
AU  - Hoffmann, Norbert
TI  - Stability of Arakelov bundles and tensor products without global sections
JO  - Documenta mathematica
PY  - 2003
SP  - 115
EP  - 123
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a12/
LA  - en
ID  - DOCMA_2003__8__a12
ER  - 
%0 Journal Article
%A Hoffmann, Norbert
%T Stability of Arakelov bundles and tensor products without global sections
%J Documenta mathematica
%D 2003
%P 115-123
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a12/
%G en
%F DOCMA_2003__8__a12
Hoffmann, Norbert. Stability of Arakelov bundles and tensor products without global sections. Documenta mathematica, Tome 8 (2003), pp. 115-123. http://geodesic.mathdoc.fr/item/DOCMA_2003__8__a12/