$L^2$-invariants of locally symmetric spaces
Documenta mathematica, Tome 7 (2002), pp. 219-237.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $X=G/K$ be a Riemannian symmetric space of the noncompact type, $\Gamma\subset G$ a discrete, torsion-free, cocompact subgroup, and let $Y=\Gamma\backslash X$ be the corresponding locally symmetric space. In this paper we explain how the Harish-Chandra Plancherel Theorem for $L^2(G)$ and results on $({\frak g}, K)$-cohomology can be used in order to compute the $L^2$-Betti numbers, the Novikov-Shubin invariants, and the $L^2$-torsion of $Y$ in a uniform way thus completing results previously obtained by Borel, Lott, Mathai, Hess and Schick, Lohoue and Mehdi. It turns out that the behaviour of these invariants is essentially determined by the fundamental rank $m=\mbox{rk}_{\Bbb C}G- \mbox{rk}_{\Bbb C}K$ of $G$. In particular, we show the nonvanishing of the $L^2$-torsion of $Y$ whenever $m=1$.
Classification : 58J35, 57R19, 22E46
Keywords: locally symmetric spaces, $L^2$-cohomology, Novikov-shubin invariants, $L^2$-torsion, relative Lie algebra cohomology
@article{DOCMA_2002__7__a9,
     author = {Olbrich, Martin},
     title = {$L^2$-invariants of locally symmetric spaces},
     journal = {Documenta mathematica},
     pages = {219--237},
     publisher = {mathdoc},
     volume = {7},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a9/}
}
TY  - JOUR
AU  - Olbrich, Martin
TI  - $L^2$-invariants of locally symmetric spaces
JO  - Documenta mathematica
PY  - 2002
SP  - 219
EP  - 237
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a9/
LA  - en
ID  - DOCMA_2002__7__a9
ER  - 
%0 Journal Article
%A Olbrich, Martin
%T $L^2$-invariants of locally symmetric spaces
%J Documenta mathematica
%D 2002
%P 219-237
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a9/
%G en
%F DOCMA_2002__7__a9
Olbrich, Martin. $L^2$-invariants of locally symmetric spaces. Documenta mathematica, Tome 7 (2002), pp. 219-237. http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a9/