On the classification of simple inductive limit $C^*$-algebras. I: The reduction theorem
Documenta mathematica, Tome 7 (2002), pp. 255-461.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Suppose that $$A = \lim\limits_{n\to\infty}(A_n = \bigoplus_{i=1}^{t_n} M_{[n,i]}(C(X_{n,i})), \phi_{n,m})$$ is a simple $C^*$-algebra, where $X_{n,i}$ are compact metrizable spaces of uniformly bounded dimensions (this restriction can be relaxed to a condition of very slow dimension growth). It is proved in this article that $A$ can be written as an inductive limit of direct sums of matrix algebras over certain special 3-dimensional spaces. As a consequence it is shown that this class of inductive limit $C^*$-algebras is classified by the Elliott invariant --- consisting of the ordered K-group and the tracial state space --- in a subsequent paper joint with G. Elliott and L. Li (Part II of this series). (Note that the $C^*$-algebras in this class do not enjoy the real rank zero property.)
@article{DOCMA_2002__7__a7,
     author = {Gong, Guihua},
     title = {On the classification of simple inductive limit $C^*$-algebras. {I:} {The} reduction theorem},
     journal = {Documenta mathematica},
     pages = {255--461},
     publisher = {mathdoc},
     volume = {7},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a7/}
}
TY  - JOUR
AU  - Gong, Guihua
TI  - On the classification of simple inductive limit $C^*$-algebras. I: The reduction theorem
JO  - Documenta mathematica
PY  - 2002
SP  - 255
EP  - 461
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a7/
LA  - en
ID  - DOCMA_2002__7__a7
ER  - 
%0 Journal Article
%A Gong, Guihua
%T On the classification of simple inductive limit $C^*$-algebras. I: The reduction theorem
%J Documenta mathematica
%D 2002
%P 255-461
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a7/
%G en
%F DOCMA_2002__7__a7
Gong, Guihua. On the classification of simple inductive limit $C^*$-algebras. I: The reduction theorem. Documenta mathematica, Tome 7 (2002), pp. 255-461. http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a7/