Unimodular covers of multiples of polytopes
Documenta mathematica, Tome 7 (2002), pp. 463-480.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $P$ be a $d$-dimensional lattice polytope. We show that there exists a natural number $c_d$, only depending on $d$, such that the multiples $cP$ have a unimodular cover for every natural number $c\ge c_d$. Actually, an explicit upper bound for $c_d$ is provided, together with an analogous result for unimodular covers of rational cones.
Classification : 52B20, 52C07, 11H06
Keywords: lattice polytope, rational cone, unimodular covering
@article{DOCMA_2002__7__a6,
     author = {Bruns, Winfried and Gubeladze, Joseph},
     title = {Unimodular covers of multiples of polytopes},
     journal = {Documenta mathematica},
     pages = {463--480},
     publisher = {mathdoc},
     volume = {7},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a6/}
}
TY  - JOUR
AU  - Bruns, Winfried
AU  - Gubeladze, Joseph
TI  - Unimodular covers of multiples of polytopes
JO  - Documenta mathematica
PY  - 2002
SP  - 463
EP  - 480
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a6/
LA  - en
ID  - DOCMA_2002__7__a6
ER  - 
%0 Journal Article
%A Bruns, Winfried
%A Gubeladze, Joseph
%T Unimodular covers of multiples of polytopes
%J Documenta mathematica
%D 2002
%P 463-480
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a6/
%G en
%F DOCMA_2002__7__a6
Bruns, Winfried; Gubeladze, Joseph. Unimodular covers of multiples of polytopes. Documenta mathematica, Tome 7 (2002), pp. 463-480. http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a6/