Rost projectors and Steenrod operations
Documenta mathematica, Tome 7 (2002), pp. 481-493.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $X$ be an anisotropic projective quadric possessing a Rost projector $\rho$. We compute the 0-dimensional component of the total Steenrod operation on the modulo 2 Chow group of the Rost motive given by the projector $\rho$. The computation allows to determine the whole Chow group of the Rost motive and the Chow group of every excellent quadric (the results announced by Rost). On the other hand, the computation is being applied to give a simpler proof of Vishik's theorem stating that the integer $\dim X+1$ is a power of 2.
Classification : 11E04, 14C25
Keywords: quadratic forms, Chow groups and motives, Steenrod operations
@article{DOCMA_2002__7__a5,
     author = {Karpenko, Nikita and Merkurjev, Alexander},
     title = {Rost projectors and {Steenrod} operations},
     journal = {Documenta mathematica},
     pages = {481--493},
     publisher = {mathdoc},
     volume = {7},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a5/}
}
TY  - JOUR
AU  - Karpenko, Nikita
AU  - Merkurjev, Alexander
TI  - Rost projectors and Steenrod operations
JO  - Documenta mathematica
PY  - 2002
SP  - 481
EP  - 493
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a5/
LA  - en
ID  - DOCMA_2002__7__a5
ER  - 
%0 Journal Article
%A Karpenko, Nikita
%A Merkurjev, Alexander
%T Rost projectors and Steenrod operations
%J Documenta mathematica
%D 2002
%P 481-493
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a5/
%G en
%F DOCMA_2002__7__a5
Karpenko, Nikita; Merkurjev, Alexander. Rost projectors and Steenrod operations. Documenta mathematica, Tome 7 (2002), pp. 481-493. http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a5/