Complex structure on the smooth dual of $GL(n)$
Documenta mathematica, Tome 7 (2002), pp. 91-112.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $G$ denote the $p$-adic group $GL(n)$, let $\Pi(G)$ denote the smooth dual of $G$, let $\Pi(\Omega)$ denote a Bernstein component of $\Pi(G)$ and let $\calh(\Omega)$ denote a Bernstein ideal in the Hecke algebra $\calh(G)$. With the aid of Langlands parameters, we equip $\Pi(\Omega)$ with the structure of complex algebraic variety, and prove that the periodic cyclic homology of $\mathcal{H}(\Omega)$ is isomorphic to the de Rham cohomology of $\Pi(\Omega)$. We show how the structure of the variety $\Pi(\Omega)$ is related to Xi's affirmation of a conjecture of Lusztig for $GL(n, \mathbb{C})$. The smooth dual $\Pi(G)$ admits a deformation retraction onto the tempered dual $\Pi^t(G)$.
Classification : 46L80, 22E50, 46L87, 11S37
Keywords: Langlands correspondence, $p$-adic $GL(n)$, baum-connes map, smooth dual, tempered dual
@article{DOCMA_2002__7__a16,
     author = {Brodzki, Jacek and Plymen, Roger},
     title = {Complex structure on the smooth dual of $GL(n)$},
     journal = {Documenta mathematica},
     pages = {91--112},
     publisher = {mathdoc},
     volume = {7},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a16/}
}
TY  - JOUR
AU  - Brodzki, Jacek
AU  - Plymen, Roger
TI  - Complex structure on the smooth dual of $GL(n)$
JO  - Documenta mathematica
PY  - 2002
SP  - 91
EP  - 112
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a16/
LA  - en
ID  - DOCMA_2002__7__a16
ER  - 
%0 Journal Article
%A Brodzki, Jacek
%A Plymen, Roger
%T Complex structure on the smooth dual of $GL(n)$
%J Documenta mathematica
%D 2002
%P 91-112
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a16/
%G en
%F DOCMA_2002__7__a16
Brodzki, Jacek; Plymen, Roger. Complex structure on the smooth dual of $GL(n)$. Documenta mathematica, Tome 7 (2002), pp. 91-112. http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a16/