On the uniqueness problem of bivariant Chern classes
Documenta mathematica, Tome 7 (2002), pp. 133-142.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we show that the bivariant Chern class $\gamma: {\Bbb F} \to {\Bbb H}$ for morphisms from possibly singular varieties to nonsingular varieties are uniquely determined, which therefore implies that the Brasselet bivariant Chern class is unique for cellular morphisms with nonsingular target varieties. Similarly we can see that the Grothendieck transformation $\tau : {\Bbb K}_{alg} \to {\Bbb H}_{\Bbb Q}$ constructed by Fulton and MacPherson is also unique for morphisms with nonsingular target varieties.
Classification : 14C17, 14F99, 55N35
Keywords: bivariant theory, bivariant Chern class, Chern-Schwartz-macpherson class, constructible function
@article{DOCMA_2002__7__a14,
     author = {Yokura, Shoji},
     title = {On the uniqueness problem of bivariant {Chern} classes},
     journal = {Documenta mathematica},
     pages = {133--142},
     publisher = {mathdoc},
     volume = {7},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a14/}
}
TY  - JOUR
AU  - Yokura, Shoji
TI  - On the uniqueness problem of bivariant Chern classes
JO  - Documenta mathematica
PY  - 2002
SP  - 133
EP  - 142
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a14/
LA  - en
ID  - DOCMA_2002__7__a14
ER  - 
%0 Journal Article
%A Yokura, Shoji
%T On the uniqueness problem of bivariant Chern classes
%J Documenta mathematica
%D 2002
%P 133-142
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a14/
%G en
%F DOCMA_2002__7__a14
Yokura, Shoji. On the uniqueness problem of bivariant Chern classes. Documenta mathematica, Tome 7 (2002), pp. 133-142. http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a14/