Families of $p$-divisible groups with constant Newton polygon
Documenta mathematica, Tome 7 (2002), pp. 183-201.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $X$ be a $p$-divisible group with constant Newton polygon over a normal Noetherian scheme $S$. We prove that there exists an isogeny $X \to Y$ such that $Y$ admits a slope filtration. In case $S$ is regular this was proved by N. Katz for dim $S = 1$ and by T. Zink for dim $S \geq 1$.
Classification : 14L05, 14F30
@article{DOCMA_2002__7__a11,
     author = {Oort, Frans and Zink, Thomas},
     title = {Families of $p$-divisible groups with constant {Newton} polygon},
     journal = {Documenta mathematica},
     pages = {183--201},
     publisher = {mathdoc},
     volume = {7},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a11/}
}
TY  - JOUR
AU  - Oort, Frans
AU  - Zink, Thomas
TI  - Families of $p$-divisible groups with constant Newton polygon
JO  - Documenta mathematica
PY  - 2002
SP  - 183
EP  - 201
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a11/
LA  - en
ID  - DOCMA_2002__7__a11
ER  - 
%0 Journal Article
%A Oort, Frans
%A Zink, Thomas
%T Families of $p$-divisible groups with constant Newton polygon
%J Documenta mathematica
%D 2002
%P 183-201
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a11/
%G en
%F DOCMA_2002__7__a11
Oort, Frans; Zink, Thomas. Families of $p$-divisible groups with constant Newton polygon. Documenta mathematica, Tome 7 (2002), pp. 183-201. http://geodesic.mathdoc.fr/item/DOCMA_2002__7__a11/